
Improved State Space Reductions for LTL
Model Checking of C & C++ Programs

P. Ročkai, J. Barnat, L. Brim

Faculty of Informatics
Masaryk University Brno

May the 14th, 2013

DIVINE

I DIVINE is an explicit-state LTL model checker,
I which does C and C++ verification via LLVM,
I and does so in parallel, and possibly in a cluster.

(Yes, it is awesome. The mileage is great and your wife will love the color.)

LLVM

I Compilation & optimisation infrastructure,
I with a workable intermediate representation & library.
I Low-level, resembling a CPU instruction set,
I widely deployed in practice.

I C & C++ Frontends: Clang, dragonegg (GCC)

What is a Program State?

global flags assert: pc | what | tid global memory

heap bitmap jumptable object object

tid 0 pc + registers pc + registers pc + registers

tid 1 pc + registers pc + registers

Stored as a flat vector of bytes in memory, sent across network,
held in a hash table.

Program State Spaces

I The state space of a parallel program is HUGE ...
I Very simple model, peterson on 2 threads, no reductions:
I doesn’t finish in 16GB of memory. (Ouch.)

Opportunities
I Excessive interleaving:

I τ+reduction,
I store visibility,
I atomic sections in library routines.

I Redundant heap configurations:
I heap symmetry reduction.

Counter-Examples vs Reductions

I A counter-example in 1000 steps is (mostly) useless.
I Better reductions yield shorter counter-examples.

That ubiquitous peterson model again:
I no reductions, almost 200 steps in a counter-example;
I fully reduced: 12 steps

How to lose 20 pounds in 2 weeks?
... why, just use magic.

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: ∅

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: ∅

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: ∅

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: ∅

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: ∅

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: ∅

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1
%7+2: @i = 2

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1
%7+2: @i = 2

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1
%7+2: @i = 2

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1
%7+2: @i = 2

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1
%7+2: @i = 2

τ+reduction

I Combination of path reduction & partial order reduction.
I Based on τ -reduction, adding a dynamic revisit check.

<label>:4
%5 = load i32* @i
%6 = icmp slt i32 %5, 2
br i1 %6, label %7, label %4

<label>:7
%9 = load i32* @i
%10 = add nsw i32 %9, 1
store i32 %10, i32* @i
br label %4

generated: %7+3: @i = 1
%7+2: @i = 2

%4+3: @i = 2

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

0

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

0

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

→ 5

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

0

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

→ 5→ 3

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

0

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

→ 5→ 3→ 7

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

0

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

→ 5→ 3→ 7

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

0

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

→ 5→ 3→ 7

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

→ 5

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

→ 5→ 3→ 7

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

→ 5→ 3

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

→ 5→ 3→ 7

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

→ 5→ 3→ 7

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Heap Symmetry

I Sometimes, different states are actually the same.
I ⇒ they are symmetric, and we only want one.

A1: val = 5, next = A2

A2: val = 3, next = A3

A3: val = 7, next = A1

→ 5→ 3→ 7

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A2

→ 5→ 3→ 7

I This happens a lot when allocations are interleaved.
I Sort topologically from fixed roots. Keep track of all

pointers, instrument code. Get a canonic layout. Magic.

Tracking Pointers

I Low-level languages with type erasure (C, C++),
I with no way to distinguish pointers from other data.

I Magic: shadow memory – we instrument all memory and
register access with code to keep extra bits of info for each
machine word.

I The extra bits include a tag saying “this word is a pointer”.
I Copying, adding to, etc. a pointer results in a pointer.
I Some dubious pointer operations are disallowed (not a

problem in practice).

Shadow Memory

Some initial layout:

0 1 0 1 0 0

3 X 5 X 7 9

Shadow Memory

Real Memory

Shadow Memory

Copy memory from address 2 to address 6:

0 1 0 1 0 1

3 X 5 X 7 X

Shadow Memory

Real Memory

Shadow Memory

Set address 2 to (integral) value 2:

0 0 0 1 0 1

3 2 5 X 7 X

Shadow Memory

Real Memory

Store Visibility

I τ+reduction treats store as a visible operation.
I We can do better than that.

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A4

A4: val = 3, next = ∅

A5: val = 4, next = A4

T1 store to A2

T3 %7 = A4

T2 %2 = A5

Threads
H

eap

I The store to A2 is invisible ,
I as A2 is not reachable from any other thread.

Store Visibility

I τ+reduction treats store as a visible operation.
I We can do better than that.

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A4

A4: val = 3, next = ∅

A5: val = 4, next = A4

T1 store to A2

T3 %7 = A4

T2 %2 = A5

Threads
H

eap

I The store to A2 is invisible ,
I as A2 is not reachable from any other thread.

Store Visibility

I τ+reduction treats store as a visible operation.
I We can do better than that.

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A4

A4: val = 3, next = ∅

A5: val = 4, next = A4

T1 store to A2

T3 %7 = A4

T2 %2 = A5

Threads
H

eap

I The store to A2 is invisible ,
I as A2 is not reachable from any other thread.

Store Visibility

I τ+reduction treats store as a visible operation.
I We can do better than that.

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A4

A4: val = 3, next = ∅

A5: val = 4, next = A4

T1 store to A2

T3 %7 = A4

T2 %2 = A5

Threads
H

eap

I The store to A2 is invisible ,
I as A2 is not reachable from any other thread.

Store Visibility

I τ+reduction treats store as a visible operation.
I We can do better than that.

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A4

A4: val = 3, next = ∅

A5: val = 4, next = A4

T1 store to A2

T3 %7 = A4

T2 %2 = A5

Threads
H

eap

I The store to A2 is invisible ,
I as A2 is not reachable from any other thread.

Store Visibility

I τ+reduction treats store as a visible operation.
I We can do better than that.

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A4

A4: val = 3, next = ∅

A5: val = 4, next = A4

T1 store to A2

T3 %7 = A4

T2 %2 = A5

Threads
H

eap

I The store to A2 is invisible ,
I as A2 is not reachable from any other thread.

Store Visibility

I τ+reduction treats store as a visible operation.
I We can do better than that.

A1: val = 3, next = A3

A2: val = 5, next = A1

A3: val = 7, next = A4

A4: val = 3, next = ∅

A5: val = 4, next = A4

T1 store to A2

T3 %7 = A4

T2 %2 = A5

Threads
H

eap

I The store to A2 is invisible ,
I as A2 is not reachable from any other thread.

“User-Space” Libraries & Atomicity

I Most of our pthread.h implementation is C++ code
compiled into LLVM bitcode and linked into your program.

I There is only a handful of real “builtin” functions.

I All this code contributes to state space complexity
I & even worse, it is prone to concurrency bugs.

__divine_interrupt_mask();
touch_shared_variables();
global ++; // nobody can see us
__divine_interrupt_unmask();

I Saves a lot of work, for programmers and DIVINE alike.

Why did the chicken cross the road?
... and was it worth the effort?

Results

A few example models, with -O0:
I the infamous peterson: 294193→ 212 states
I a concurrent data structure: 559364→ 108 states

And with -O2:
I the infamous peterson: 21122→ 260 states
I a concurrent data structure: 83898→ 143 states

⇒ 590× reduction for optimized,
5179× reduction for unoptimized bitcode models.

(the red numbers include heap reduction, as it can’t be easily disabled)

The Current State of Affairs

I ISO C and most of its standard library work out of the box.
I Most of pthreads (POSIX.1c) works out of the box.
I ISO C++11 works partially:

I no exception support
I standard library not yet provided in bitcode form

I Programs with a couple threads and small memory
footprint can be verified very easily.

Future Work

I Tighter packing of state vectors (better register allocation),
I state space compression,

I experiments show further ca. 40× memory use reduction
I better (LTL) property specification.

I ... verification of x86 code?

Grab the code, build it and experiment:

http://divine.fi.muni.cz

You can also try it online with some simple C programs!

... please don’t break our server ;-)

